
 

Proceedings of the 14th International Conference on Environmental Science and Technology 
Rhodes, Greece, 3-5 September 2015 

 

CEST2015_00095 

 
ANALYTICAL AND NUMERICAL MODELLING OF COLLOIDAL SILICA 

TRANSPORT THROUGH SATURATED GRANULAR SOILS 

 

KANDRIS K.*, AGAPOULAKI G.I., PANTAZIDOU M. and PAPADIMITRIOU A.G. 
 

*School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, 
Zografou 157 80, Athens, Greece 
E-mail: kkandris@central.ntua.gr 

 
 

ABSTRACT 

 

Following injection of colloidal silica (CS) solutions in saturated granular soil, the viscosity of the 
solution increases until gelation is achieved. Depending on the application, this grout can 
improve the mechanical properties of the soil (e.g. enhanced resistance to liquefaction) or act 
as a barrier for contaminant containment. The time-dependent permeation potential of the CS 
solution was experimentally investigated by conducting one-dimensional tests in vertical soil 
columns, where the CS solution flowed upwardly displacing water. The experimental results 
were then compared to analytical and numerical solutions. The analytical approach for 
representing flow of the CS solution is based on the generalized form of Darcy’s law for varying 
density, properly modified in order to account for varying viscosity as well. In addition, we used 
the one-dimensional advection-dispersion equation to investigate the adequacy of the 
assumption that advection and dispersion control CS transport. Finally, the gelation module of 
the TOUGH2 numerical code was used to model the vertical upward permeation of CS 
solutions. 

The comparisons of observed and analytical values revealed that the existing analytical 
solution, as modified herein for varying viscosity, can describe satisfactorily the pattern of 
decreasing flow rates of the CS solution within the soil column. In contrast, the advection-
dispersion equation failed to adequately predict CS transport. Although the dispersive 
component of CS transport was in agreement with the observations, the use of mean seepage 
velocities over-predicted the arrival time of the CS front. In the numerical simulations, we 
implicitly modelled the gelation process by: (a) successfully fitting an exponential curve to 
measurements of the viscosity of the CS solution, which increased with time, and (b) employing 
a simple linear mixing rule to calculate the viscosity of the liquid phase, i.e. the mixture of water-
CS solution. The numerical approximations reproduced the arrival of the CS front with adequate 
accuracy. The effect of numerical dispersion (i.e. the spreading of the solute due to the 
discretization of the numerical scheme) was also investigated: despite the application of finer 
spatial and time discretization schemes, numerical dispersion remained greater than its 
experimental counterpart. More specifically, the numerically calculated zone of dispersion was 
two times broader than the observed one. For the application of interest, this is a conservative 
result, considering that CS concentrations near the target (i.e. close to the injected 
concentrations) are predicted to arrive later compared to the observations. Hence, the results 
overall corroborate the numerical modelling approach and offer the confidence required before 
advancing to modelling two-dimensional problems of colloidal silica permeation. 
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1. Introduction 
Colloidal silica (CS), as a non-toxic and inert gelling liquid, can be used safely as grouting 
material. Depending on the application, in-situ gelation of CS can improve the mechanical 
properties of the soil (e.g. mitigating liquefaction risk) or act as an impermeable barrier and 
reduce the potential for spreading of contaminants. Controlled injection of the CS solution relies 
on the permeation potential of colloidal silica. Herein, the permeation potential has been 
investigated experimentally by conducting one-dimensional permeation tests in columns of 
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saturated granular soil. These tests were performed in columns with different heights and using 
different CS solutions and hydraulic gradients. 

The main objective of this study is to model one-dimensional CS flow and transport in saturated 
granular soils. To this end, we investigated whether observed CS flow rates and concentrations 
can be reproduced by (a) simple analytical relationships, and (b) a suitable module of the 
TOUGH2 numerical code (Pruess 1991). Gallagher and Lin (2009) performed permeation tests 
under similar laboratory conditions and with comparable hydraulic gradients. They reported that 
advection and the increasing viscosity of CS grout were the dominant factors controlling CS 
transport. Consequently, in addition to modelling CS flow (i.e. advection), we aimed to implicitly 
model the gelation process of CS grouts. Apart from the advective component of transport, we 
also investigated the significance of the dispersive component, whether hydrodynamic (in the 
analytical approach) or numerical (in the numerical approach). This work is an effort to confirm 
the aforementioned distinctive modelling approaches with observed data and is a prerequisite 
before progressing to the modelling of two-dimensional CS permeation problems. 
 
2. Column tests 
The goal of the experiments was to observe the one-dimensional vertical upward permeation of 
CS solutions (the percentage per weight of CS in the solution is 10%). To this end, five tests 
were performed in columns filled with fully saturated sand. Table 1 gives the characteristics of 
these tests. 

Table 1: Characteristics of the one-dimensional column tests 

Property Test 1 Test 2 Test 3 Test 4 Test 5 

Column height, m 0.20 0.20 0.40 1.00 0.20 

Porosity 0.38 0.38 0.38 0.39 0.38 

Hydraulic conductivity, m/s 2.84×10-4 3.17×10-4 3.40×10-4 3.10×10-4 2.84×10-4 

CS solution pH 5.53 5.48 7.00 5.50 10.00 

Ionic strength, N 0.10 0.10 0.10 0.10 0.00 

Initial hydraulic gradient, i 0.05 0.05 0.05 0.25 0.05 

The flow rate was measured in each test. The time-dependent viscosities of CS solutions were 
measured independently. The location of the CS solution front was tracked visually, as the CS 
solution was colored with blue food dye. Furthermore, pore water samples were extracted at 
time intervals from sampling ports, which were located every 10 cm along the column starting 
from an elevation of 5 cm from the bottom. From these samples, the evolution of CS 
concentration was specified at each sampling port and, consequently, the corresponding 
experimental breakthrough curves were estimated. Test duration ranged from three to eight 
hours. At the end of the tests, the viscosity of the injected CS solution was about 6×10-3 Pa s, 
apart from Test 5, during which CS viscosity remained equal to its initial value (1.47×10-3 Pa s). 
 
3. Modelling colloidal silica flow and transport 
As the CS solution is delivered in the soil column from the inlet, it moves upwards displacing 
water. The injection of a CS solution into a saturated porous medium constitutes a flow problem 
under viscosity and density varying conditions. As shown schematically in Figure 1, at time t, 
the CS solution occupies a region of the soil column with height equal to Lg. In this region, pore 
space is filled with the CS solution, which is heavier (CS solution density, ρg, is approximately 
equal to 1050 kg/m3) and more viscous than water (CS solution viscosity, μg, is greater than 
1.3×10-3 Pa s at the beginning of each test and increases with time). 
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Figure 1: Schematic representation of the one-dimensional permeation tests 

 
3.1. Analytical modelling of CS flow 
For the assessment of variable-density flow, Post et al. (2007) suggest the application of the 
more general form of Darcy’s law for fluid flow in a porous medium with an average fluid 
density, ρα and liquid phase viscosity μ: 
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where k is intrinsic permeability (m2), ρw is fresh water density (kg/m3), L is the column height 
(m), A is the cross-sectional area perpendicular to the flow direction (m2) and h1 and h2 are the 
measured hydraulic heads (m) corresponding to the bottom and the top of the column, 
respectively. 

Based on the liquid phase occupying its pore space, the soil column is divided in two distinctive 
regions: (a) a region with height Lg and liquid phase density ρg occupied by the CS grout, and 
(b) a region with height Lw and liquid phase density ρw occupied by water. As a result, the 
average fluid density along the column is equal to: 
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where z1 and z2 are the elevations (m) of the bottom and the top of the soil column, respectively. 
If we substitute Equation (2) in Equation (1), the flow rate can be estimated by the following 
analytical equation: 
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However, in the case of CS flow, the spatial variation of viscosity cannot be neglected. To this 
end, the calculation of an average viscosity term, μα, is recommended: 
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where μw is fresh water viscosity (Pa s). Equation (3) can now be modified to the following 
expression: 
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3.2. Analytical modelling of CS transport 
Assuming that the CS solution is a miscible aqueous solution, we modelled CS transport using 
the Ogata and Banks (1961) solution for the one-dimensional advection-dispersion equation, 
with a constant CS concentration of Co equal to 10% per weight at the source (i.e. the inlet): 
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where Cgel is CS concentration, z is the elevation from the bottom of the column, us is the 
seepage velocity and D is the hydrodynamic dispersion coefficient. The hydrodynamic 
dispersion coefficient is expressed as: 

sLL u=αD=D           (7) 

where DL is the longitudinal dispersion coefficient and αL is the longitudinal dispersivity, taken 
equal to 0.042 cm (Saiers et al., 1994). Diffusion was neglected. Finally, us was taken as the 
mean value of the seepage velocities calculated by the measured flow rates during each test. 
Thus, we implicitly accounted for density and viscosity variations in the analytical solution of CS 
transport. 
 
3.3. Numerical modelling of CS flow 
The numerical approach followed herein considers that advection and the gelation of the CS 
solution are the key mechanisms dominating transport. The flow of CS grout was simulated as a 
miscible gel displacement problem using the gelation module (Finsterle et al., 1994) of the 
TOUGH2 numerical code. Two major assumptions are made: (a) the grout is treated as a 
miscible aqueous solution and (b) the chemical process of gelation is not explicitly modelled. 

The gelation process is implicitly described by a gel-time curve and a mixing rule. More 
specifically, the viscosity of pure grout was simulated as a function of time by an exponential 
gel-time curve: 

 tα+α=αμg 321 exp          (8) 

where α1, α2 and α3 are fitting parameters. In addition, liquid phase viscosity was estimated as a 
function of grout concentration by two candidate mixing rules (Finsterle et al., 1994). First, a 
power-law rule was implemented: 
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where Xgel is the mass fraction of CS in the liquid phase. Then, the following simpler linear 
mixing rule was evaluated also: 

  wgelggel μX+μμ=X 1         (10) 

 
4. Results 
4.1. Analytical modelling of CS flow 
As shown in Figure 2, the analytical solution reproduced satisfactorily the pattern of flow rate 
reduction over time due to gravity and viscosity. The discrepancy between experimental and 
analytical values may be attributed to the difficulty in accurately locating the CS front (i.e. Lg) by 
visual observation and to the uncertainty accompanying the independently measured CS 
viscosity values. During Test 5, when CS gelation was inhibited and, hence, CS viscosity 
remained constant over time, the analytical solution reproduced accurately the observed flow 
rates. 
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Figure 2: Observed and analytically calculated flow rates for Tests 1, 3, 4 and 5. 
 
4.2. Analytical modelling of CS transport 
The one-dimensional advection-dispersion equation failed to reproduce the observed CS 
breakthrough curves, as the advective arrival time was overestimated in all simulated tests 
(Figure 3). Nevertheless, the resulting dispersive component of transport was in agreement with 
the observations. Gallagher and Lin (2009) achieved a closer fit to their experimental 
breakthrough curves by also employing the one-dimensional advection-dispersion equation with 
a mean uniform seepage velocity. However, in their experimental results, CS viscosity remained 
relatively low (μg was doubled by the end of the test) and the observed seepage velocities 
demonstrated a smooth reduction over time. Therefore, the mean seepage velocity employed in 
Equation 6 deviated less from the observed minimum and maximum velocity values. The 
comparison between observations and analytical results indicates that the complexity of CS 
transport under density and viscosity varying conditions cannot be successfully simulated by 
employing a mean seepage velocity value. 

 

Figure 3: Observed CS concentrations and analytically calculated breakthrough curves at the 
two sampling ports (z = 5 cm and z = 15 cm) for Tests 1, 3 and 4. 

 
4.3. Numerical modelling of CS flow 
For the modelling of the gelation process, we had to define distinctive gel-time curves for each 
test by fitting Equation (8) to the independently observed CS viscosity values. The exponential 
gel-time curve was sufficiently fitted to the experimental values (the coefficient of determination, 
R2, was at least equal to 0.60) and the parameters α1, α2 and α3 were inversely estimated with 
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reasonable accuracy. Regarding the mixing rule, for the range of measured viscosity values 
(from 1.3×10-3 Pa s to about 6×10-3 Pa s) both mixing rules were equivalent. Therefore, we used 
the simple linear equation described by Equation (10). 

The gel-time curve and the mixing rule control implicitly the gelation process. Therefore, after 
specifying these expressions and the boundary conditions, we could model CS flow with the 
TOUGH2 numerical code. The comparisons between experimental data and numerical 
approximations demonstrated that the numerical approach simulated CS flow with adequate 
accuracy (Figure 4). The decrease of flow rates due to gravity and viscosity effects was 
successfully reproduced. 

 

Figure 4: Observed and numerically calculated flow rates for Tests 1, 3, 4 and 5. 

Due to discretization errors, numerical solutions are accompanied by an artificial dispersion 
term called numerical dispersion. In order to mitigate numerical dispersion, we employed small 
time and space steps (dt = 0.05 s, dx = 0.25 cm) in our simulations. In Figure 5, normalized CS 
concentrations are plotted versus the sampling point distance from the CS front. Regarding the 
numerical approximations, the CS front is defined as the location where CS concentration is half 
the concentration of the source solution, i.e. 0.5Co. 

 

Figure 5: Observed and numerically calculated CS concentrations before and after the CS front 
for Tests 3 and 4. 

As shown in Figure 5, the discretization scheme employed herein resulted in a dispersive 
component of transport greater than the observed. The observed zone of dispersion (i.e. the 
zone along which CS concentration varies from zero to Co) was approximately equal to 4 cm, 
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while the numerically calculated zone of dispersion was twice as large. Nevertheless, due to the 
issue of numerical dispersion we err on the side of caution for CS concentrations greater than 
0.5Co: simulated concentrations are expected to arrive later than their experimental 
counterparts. Further, reduction of time or spatial steps resulted in significantly greater 
computational burden without any obvious reduction of numerical dispersion. 
 
5. Conclusions 
Comparisons between laboratory observations and the two modelling approaches for one-
dimensional CS transport through saturated sand lead to the following conclusions: 

1. The CS flow rate may be satisfactorily simulated by a simple analytical equation based 
on the generalized Darcy's law after appropriate adjustments for the variations in 
viscosity and density. 

2. Analytical solutions of the one-dimensional advection-dispersion equation give poor 
estimates of the CS transport for sizable reductions of seepage velocity. 

3. The gelation module of the TOUGH2 numerical code was capable of reproducing the 
decreasing trend in flow rates attributed to gravitational and viscosity effects. 

4. The numerical solution of flow is accompanied by numerical dispersion greater than the 
experimentally observed hydrodynamic dispersion, despite the application of fine time 
and spatial discretization. 

5. The comparison between laboratory data and numerical results provides confidence to 
proceed with modelling of two-dimensional problems and developing design tools for 
field applications of CS injection. 
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