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ABSTRACT 
 

An accurate prediction of maximum scour depth is necessary for a safe design of every object 
placed on or adjacent to a riverbed. This paper, introduces the application of some new hybrid 
learning rules on ANFIS technique as an alternative to the common hybrid learning methods in 
prediction of contraction scour depth. Differently from the common hybrid rule which combines 
the gradient method and the least squares estimate, new hybrid learning rules combine the 
Levenberg-Marquardt and the gradient methods, as well as the Levenberg-Marquardt method 
and the least squares estimate. To this aim, MATLAB toolbox is used to build ANFIS models 
based on common learning rules and FORTRAN programming language is utilized to construct 
ANFIS models for the proposed hybrid learning algorithms. The results of the proposed 
methods are evaluated and compared with similar networks trained with the common Back-
Propagation and Hybrid learning algorithms which are widely used in literature for hydraulic 
issues.  
 
Keywords: Adaptive Neuro Fuzzy Inference Systems, Levenberg-Marquardt method, 
contraction scour 
 
1.  Introduction 
Scouring occurs due to several different reasons. One is the so called contraction scour which 
is often encountered in natural rivers due to channel contraction or river restoration structures. 
When the flow area is reduced by a natural contraction or bridge opening, the velocity and bed 
shear stress will be increased as required by continuity and momentum considerations. The 
higher velocity results in an increased erosive force so that more bed material is removed from 
the contracted reach. As a consequence of which, the bed elevation is lowered and a scour hole 
develops over the general bridge cross section. Contraction scour is classified as either clear-
water or live-bed. In the clear-water case, no sediment transport occurs upstream of the 
contraction, while in live-bed case, sediment is transported from upstream through the 
contraction scour area. Further, two different contraction types can be specified: the short one 
and the long one, according to the ratio of the length of the contraction to the width of the 
approaching flow. Figure 1 shows the schematic of a rectangular contraction, where ds is 
equilibrium scour depth [m], L is length of contraction [m], h1 is approaching flow depth, h2 is 
flow depth in contracted depth [m], b1 is approaching channel width [m], and b2 is contracted 
channel width [m]. In the literature different statements for the threshold of the ratio L/b1 by 
which the contraction is designated as whether long or short can be found. For example 
Komura (1966) terms a contraction as long when values of L/b1 > 1 are predominant, whereas 
Webby (1984) sees values of L/b1 > 2 as relevant. Several contraction scour formulas have 
been developed for the evaluation of the equilibrium scour depth. Different approaches from 
theoretical estimation over laboratory to field data were used. Due to the complexity of scour 
most of them were accomplished in flumes under clear-water conditions. However, despite the 
many years of research into contraction scour, no formula exists, which is generally applicable 
to all circumstances. The reasons are assumed in the complexity of contraction scour and in 
limitations of the nonlinear regression, which was mainly used for contractions scour formulae 
derivation by earlier investigators. Recognizing these difficulties and the importance of 
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contraction scour, it is reasonable to explore new methods for its prediction. Recently, fuzzy 
inference systems have been recognized as a potentially valuable tool for modeling complex 
non-linear systems.The main objective of this paper is to analyze the capability of ANFIS with 
different learning algorithms for predicting of contraction scours. To this aim, some new learning 
algorithms for ANFIS are written in FORTRAN language and the calculated results are 
compared with those using common learning algorithms. 

 

Figure 1: Schematic of a long rectangular channel contraction at equilibrium scour conditions: 
(a) top view; (b) side view, (Dey & Raikar, 2005) 

 
2. ANFIS model 
Adaptive network based fuzzy inference system (ANFIS) is a neuro fuzzy technique where the 
fusion is made between the artificial neural network (ANN) and the fuzzy inference system 
(FIS). Based on the differences between the specification of the consequent part and the 
defuzzification schemes, several types of FIS have been proposed. Among them the Takagi-
Sugeno’s (TS’s) system (Takagi & Sugeno, 1985) is the most common one, which will be used 
also in this study. An ANFIS is a network structure consisting of a number of nodes connected 
through directional links. Each node is characterized by a node function with fixed or adjustable 
parameters. The learning or training phase of a neural network is a process to determine 
parameter values to sufficiently fit the training data. The basic learning rule is based on the well-
known back-propagation method, which seeks to minimize some measure of error, usually the 
sum of squared differences between network’s outputs and desired outputs. In first-order TS’s 
system, a typical rule set with two fuzzy rules and four membership functions can be expressed 
as (Sayed et al., 2003): 

 Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 

 Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 

Where x and y are inputs; f1 and f2 are output levels. It should be noted that the possible number 
of rules for an ANFIS model with two inputs and two membership functions is four while in the 
above equation just two rules are considered for simplicity in explanation. This means that the 
two cases “if x is A1 and y is B2” and “if x is A2 and y is B1” are not considered. The ANFIS 
contains now five layers with the following processes: 

 Layer 1: Each node in this layer produces membership grades of an input variable. The 
output of i-th node in layer l is denoted as O. Assuming a generalized bell shaped 
function as the membership function, the output can be computed as: 
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Where {ai, ci, Ni} are adaptable variables known as premise parameters. The outputs of this 
layer are the membership values of the premise part. 

 Layer 2: Every node in this layer multiplies the incoming signals as: 

    2,1,2  jyxwO BjAjjj 
 (2) 
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 Layer 3: The j-th node of this layer calculates the normalized firing strengths as: 
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 Layer 4: Node j in this layer calculate the contribution of the j-th rule towards the model 
output, with the following node function: 

  2,1,4  jryqxpwfwO jjjjjjj  (4) 

 Layer 5: The single node in this layer calculates the overall output of the ANFIS: 
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More details about the ANFIS approach can be found in Jang & Sun (1997). 
 
3. ANFIS learning rules 
Learning or training phase of a neural network is a process to determine parameter values to 
sufficiently fit the training data. The basic learning rule are the well-known back-propagation 
(BP) and hybrid  methods which try to minimize some measure of error, usually sum of squared 
differences between network’s outputs and desired outputs. However, ANFIS is a network 
architecture that allows systematic calculations of gradient vectors (derivatives of output error 
with respect to modifiable parameters), so we are not limited to the back-propagation or hybrid 
learning method only. In fact, we can apply any gradient-based techniques in nonlinear 
regression and optimization, such as the Gauss-Newton method, the Levenberg-Marquardt 
(LM) method, the extended Kalman filter algorithm etc. The LM method is an efficient nonlinear 
least-squares approach to nonlinear problems, which was proposed by Jang and Mizutani 
(1996). Applying to ANFIS training, the LM method could reduce the root mean square error 
further than other methods. This paper attempts to introduce the application of two new hybrid 
learning rules as an alternative to common learning rules in MATLAB for predicting of 
contraction scour depth. Differently from the common hybrid learning rule which combines the 
gradient method and the least squares estimate (LSE) to identify parameters, the two new 
proposed hybrid rules are combination of LM and LSE methods (called New Hybrid 1), as well 
as of LM and BP methods (called New Hybrid 2). 

 
4. Inputs and output for anfis model 
Considering a channel with rectangular cross sections and a long contraction (that means the 
ratio of the length of the contraction to the width of the approaching flow is larger than 1), the 
physical parameters influencing the equilibrium scour depth ds [m] in a long contraction are the 

approaching flow velocity v1 [m/s], the approaching flow depth h1 [m], the density of water  

[kg/m3], the density of sediment s [kg/m3], the acceleration of gravity g [m/s2],the kinematic 

viscosity of water  [m2/s], the median sediment particle size dm [m], the approaching channel 
width b1 [m], contracted channel width b2 [m], and geometric standard deviation of the grain-

size distribution g [-]. Following Dey and Raikar (2005), we can rewrite the relation between the 
ten physical variables of the dimensional contraction scour form into the non-dimensional 
functional relation with only six dimensionless variables: 
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The channel opening ratiob shows the influence of geometric contraction on the degree of 

contraction scour. d  represents the impact of sediment size on scour depth. h refers to the 

importance of approaching flow depth on scour depth. g indicates the role of sediment 
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gradation on scour depth and accounts also for armoring in well graded sediments. The 

densimetric Froude number rF considers the effect of the mobility of submerged sediment 
particles on scour depth. In the ANFIS model, these five parameters are considered as model 
inputs. The dimensionless equilibrium scour depth   is considered as the only output parameter. 
 
5. Results and discussion 
The performances of models were evaluated utilizing correlation coefficient (R), root mean 
square error (RMSE), and mean absolute error (MAE). The R parameter clarifies relation 
between observed and predicted values and RMSE evaluates the residual between observed 
and predicted contraction scour. Different ANFIS models were established to estimate 
maximum equilibrium contraction scour. Altogether 96 different ANFIS models were configured 
with three different types of membership functions: Gaussian, bell-shaped, trapezoidal and 
triangular functions for inputs as well as zero-order and first-order Sugeno’s functions for output. 
The number of MFs for inputs ranged from two to four. After an extensive trial and error search 
for various networks, an optimal ANFIS model has been found for each model. The calculated 
results of the statistical performance indices show that for the ANFIS model trained with the 
common hybrid rule two bell-shaped membership functions for input with first-order Sugeno’s 
function for output are performing best. The model with four Gaussian membership functions 
provides the best accuracy by training with the common back-propagation. The model 
combining LM and BP provides the best results by using two triangular functions with first-order 
Sugeno’s function. The model combining LM and LSE provides the best results by using three 
triangular functions with zero-order Sugeno’s function. Table 1 presents the statistical 
performances of each model for test and all data set. 

Table 1: Statistical performances of the models in contraction scour depth estimation 

Method 
Test Data All Data 

R RMSE [m] MAE [m] R RMSE [m] MAE [m] 

Back-Propagation 0.9697 0.0081 0.0062 0.9746 0.0079 0.0057 

Common Hybrid 0.9439 0.0108 0.0091 0.9752 0.0074 0.0054 

Levenberg-Marquardt 0.9875 0.0059 0.0045 0.9791 0.0067 0.0037 

New Hybrid 1 0.9834 0.0066 0.0050 0.9750 0.0072 0.0050 

New Hybrid 2 0.9780 0.0068 0.0052 0.9569 0.0094 0.0068 

According to Table 1, for prediction of maximum equilibrium contraction scour, the ANFIS 
configuration trained with the LM method as well as with the proposed hybrid rule combining of 
LM and BP methods provides the best efficiency for the test, and also, for the whole data set. 
Based on this utilized ANFIS model, all of the statistical performance indices have the lowest 
values comparing to those obtained from other methods. Table 2 presents exemplarily the CPU 
runtime required for the same number of epochs and membership function using different 
learning rules. It is obviously that new proposed hybrid methods need significantly less CPU 
runtime in comparison to LM method. Considering both the statistical indexes and the CPU 
runtime, we can say that the two new methods provide better model performance than the other 
one. Figure 3 presents a graphical comparison between different ANFIS models for the testing 
data. Again, it can be seen that the ANFIS model trained with combining LM and BP methods 
comes up with better results for contraction scour depth prediction rather than other models. 
The calculated results of ANFIS model using LM and BP methods are closer to 45o straight line 
in the scatter plots compared with the others. It should be emphasized that by using the 
common hybrid method and the new hybrid 2 method, negative (unphysical) values of scour 
depth could be obtained during and after training processes. 
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Table 2:CPU runtime  

Method 

CPU Runtime [s] 

Hybrid 
Back-

Propagation 
New Hybrid 1 New Hybrid 2 

Levenberg-
Marquardt 

2trimf-C 0.0608 0.0446 0.1060 0.0836 1.5725 

3trimf-C 0.5945 0.8117 1.2836 0.9342 28.0601 

4trimf-C 53.9704 20.0639 109.0013 96.1268 208.0040 

2trimf-L 0.5865 0.0622 0.9560 0.8110 3.1486 

3trimf-L 89.2813 1.0570 116.6921 101.0584 330.3758 

4trimf-L 107.9401 22.4231 270.5501 210.2288 22979.6200 

Note: 2trimf-C means 2 triangular membership functions with constant Sugeno’s function 
      4trimf-L means 4 triangular membership functions with linear Sugeno’s function  

  

  

Figure 3: Correlation plots for testing data; (a) Common Back-Propagation, (b) Common 
Hybrid (BP + LSE), (c) New Hybrid 1 (LM + BP), (d) New Hybrid 2 (LM + LSE) 

 
6. Conclusion 
Two new hybrid learning rules which combine the Levenberg-Marquardt and the gradient 
method, as well as Levenberg-Marquardt and the least squares estimate were applied on an 
adaptive Neuro-Fuzzy inference system for predicting the equilibrium contraction scour depth. 
The results demonstrated that the ANFIS configuration trained with the new proposed hybrid 
rule combining LM and BP methods provides the best efficiency for the test and all data set. 
The advantage of this proposed method compared to the LM method is that it decreases 
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significantly the CPU time, since the calculation of huge Jacobean matrix for consequent 
parameters was not needed. It was also showed that the results of ANFIS model trained with 
combination of LM and LSE is comparable with other method and can be used as an alternative 
to them.  
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